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The effects of the various evolutionary factors-mutation, cross breed-
ing,. selection and inbreeding-can be reduced to common terms by con-
sidering the rates of change which they tend to bring about in the relative
frequencies of alleles.' In the absence of such factors, there is constancy
of gene frequencies from the symmetry of the Mendelian mechanism.
The frequency (q) of a given gene changes at the rate Aq = - uq per

generation under recurrent mutation of the gene to alleles at the rate u.
Mutation in the opposite direction at the average rate v per generation
changes the gene frequency at the rate, Aq = v(l - q).

If a certain gene has the frequency q in a local population but q1 in the
species as a whole, exchange of the proportion m of the local population
with an equal number of random individuals from the whole species leads
to change of gene frequencies in the former at the rate Aq = -m(q - q,).
Cross breeding is, however, most likely to be with neighboring populations
which differ but little in value of q. In this case the coefficient m is only
a small fraction of the actual amount of exchange. There may be other
complications such as selective immigration or emigration, but the above
simple form will suffice here to illustrate cross breeding or migration
pressure.
The simplest kind of selection is that in which the heterozygote is

exactly half way between the two homozygotes in the extent per individual
to which it contributes to the next generation. The selective value of
zygotes (relative to a certain standard) will be designated w and the mean
value for a population, w.

ZYGOTE FREQUENCY W

AA (1 - q)2 1 w = 1 -2sq
dw

AA' 2q(1 -q) 1-s - = -2s
dq

A'A' q2 1 -2s

(1 - s)q(l- q) + (1 - 2s)q2
Aq = 2sq =

-sq(l- q) _ q(l - q) di (1)
1-2sq 2wi dq

In the more general case in which w is not related linearly to q, the
momentary selective advantage (-2s) of replacing A by A' is still given
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by dwi/dq and the value of Aq is given by the same formula as above in
terms of w, dwi/dq and q.

ZYGOTE FREQUENCY W

AA (1 -q)a 1 w = 1 -2s,q(1 -q)-S2q2

AA' 2q(1 - q) 1 -S dw = - 2s + 2(2s -s2)q
dq

A'A' q21 -52

q(1 - q) divi
Aq 22wi dq (2)

Still more generally,2 selective values depend on the interactions of the
entire system of genes. It is the harmonious development of all character-
istics that determines the success of an organism, not the absolute grades

CAPTIONS FOR FIGURES ON OPPOSITE PAGE
Figures 1 to 3. Some of the forms taken by the distribution of gene frequencies in

the case of no dominance. (,p(q) = Ce4Nq4N`-l(1 - q)4Nu-l). Mutation rates are
1 10

assumed constant and equal (u = v). Effective size of population is N = -, -
40v 40v

and 1-0 in figures 1, 2 and 3, respectively. In each case the solid line represents the

least selection (s = -v/10), the broken line selection 10 times as severe (not repre-
sented in figure 1 since practically indistinguishable from the preceding) and the dotted
line represents selection 100 times as severe.

Figures 4 to 6. Some of the forms taken by the distribution of frequencies of a
completely recessive deleterious gene. Ce2Nt,q2q2Nul( - q)4Nu-l1 Mutation rates

1
are assumed constant and equal (u = v). Effective size of population is N = -

40 and 10 in figures 4, 5 and 6, respectively. In each case the solid line represents

the least selection (t = -v/5), the broken line selection 10 times as severe (not repre-
sented in figure 4 since practically indistinguishable from the preceding) and the dotted
line represents selection 100 times as severe.

Figure 7. One of the forms taken by the distribution of gene frequencies in the case
in which there is no adaptive difference between the two homozygcus types but the
heterozygote is selected over both. Ce4Naq(l q)q4Nu-(1 -q)49-1l Inthecase repre-

sented, u = v, N = = 100v.
Figure 8. The frequencies along two diagonals of the joint distribution for two

series of alleles with equal and additive effects on a character on which adverse selection
acts according to the square of the deviation from the mean. The solid line shows
the frequencies in populations along the line connecting the two favorable types A IA 1a2a2
and a,a,A2A2. The broken line refers to the line connevting the extreme types ala,a2a2
and A tA tA2A2-. so(q) = C[l - 2s [q(1 - q,) + q2(1 - q2) + 2(q, + q21)2j2-vq,4N' -I

(1 - q1)4NuL-1lq24NV2-l(l - q2)4NU2-1. In the case shown, ul = V = u2 = v2; N = 1/2v1,
s = 5v,. Along the favorable diagonal q1 = (1 - q2) the distribution is approximately
Ce -20qlt(1- ql)q12(l- ql) 2. Al ng the unfavorable diagonal (qi = q2) it is approximately
CeO-20(1- 3q,(1- ql)) qI2(l -ql)2
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of separate elementary characters, and still less its composition with
respect to a single series of alleles. A gene that is favorable in one combi-
nation may be deleterious in another. However, if values of w are as-
signed to each possible combination, the rate of change of the frequency
of a particular gene under selection (with specified values of all other gene
frequencies) is given by the formula

qi = qiq(1 - qi) Nwi (3)
2i) bqj'

If the selection coefficients are small, w- is close to 1, and the form
'/2qi(1 - qi) oiw/lqi is sufficiently accurate and is sometimes more
convenient.
Two or more of the above factors are usually acting simultaneously.

If the rates of change per generation are small, the net rate of change is
given sufficiently accurately by the sum.

A\q = -uq + v(l - q) - m(q - qt) 4 q(l q) aa log w-. (4)2 bq

Gene frequency is in equilibrium (stable or otherwise) at any point at
which Aq = 0. Opposing mutation pressures, for example, tend to
maintain a stable equilibrium at the point q = v/(u + v). Mutation
opposed by sufficiently strong genic selection [Aq = v(1 - q) - sq(1 - q)]
gives stable equilibrium at the point q = v/s. Recessive mutation opposed
by sufficiently strong selection [Aq = v(1 - q) - sq2(1 - q)] gives stable
equilibrium at the point q = Vv/s. If there is mutation in both directions
and sufficiently strong selection against the heterozygote [Aq = -uq +
v(l - q) - s(l - 2q)q(1 - q)] there are two points of stable equilibrium,
and one of unstable equilibrium.

Migration pressure, if non-selective, may be written in the same form
as mutation pressure, Aq = -m(l - qt)q + mq1(l - q). The theory
for migration effects can thus be obtained at any time from that for muta-
tion merely by substituting m(l - qt) for u and mqt for v.

If the population is not indefinitely large, random changes occur in
gene frequencies merely as a result of the accidents of sampling among
the gametes. Letting N be the effective size of the breeding population,
the sample of 2N gametes, necessary to replace it, will be distributed
according to the expansion of [(1 - q)A + qA /]2Y. The resulting standard
deviation of q is V/q(l - q)/2N.
The changes in gene frequency due to accidents of sampling are, of

course, not correlated in successive generations. Nevertheless, the
variance of the probability array for q increases approximately with the
number of generations unltil damped by the approach of q to 0 or 1.
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The pressure toward a stable equilibrium point due to mutation, cross
breeding and selection, and the divergent tendency due to inbreeding
should between them determine a certain distribution of values of q which
is in equilibrium. The central problem in the genetics of populations is
that of finding this distribution under various conditions.
The first attempt at a solution was made by Fisher3 who used a trans-

formation of scale, 0 = cos-'(1 - 2q), designed to give a uniform sampling
variance, for all values of q. He attempted to express the conditions in a
differential equation but reached erroneous conclusions. My first note
on the subject was in 1929,4 the detailed account appearing in 1931.'
Fisher (1930)"6 after inspection of the latter paper in manuscript was
able to correct his method so as to yield results in agreement in a number
of special cases.
The method followed in the 1931 paper, referred to above, may be sum-

marized as follows. A class of genes with frequency array [(1 - q)A +
qA'] is distributed in the following generation according to the expansion
[(1 - q - Aq)A + (q + Aq)A f]2N* The contribution to the class of
genes with frequency array [(1 - q,)A + q,A'] is given by the term in the
expansion relating to 2Nq,A "s, multiplied by the frequency (f) of the con-
tributing class. The sum of such contributions from all classes of genes
should restore the same frequency as in the preceding generation if the
form of distribution is in equilibrium. The distinction between gene
frequency (q) and frequency (f) of a gene frequency must be kept in mind.

2N 1

2Nqc 2N(1 - q3 E [(q + Aq)2Nqc(I - q - Aq)2N(l - qc)f] (5)

Replacing summation by integration and letting f = (p(q)/2N or (p(q)dq
according to position in the equation, the equation to be solved for (p(q)
is as follows

-q) Pr(2N)
42cJ - qc(1 - qc)r(2Nqc)r(2N(l - q))

(q + zaq)lNqc(1 - q Aq)IN(l - qc)p(q)dq. (6)

If Aq is negligibly small-except for enough mutation from the homallelic
classes (q = 0 or 1) to make equilibrium possible-it may easily be
seen that the solution of this equation is

( C)C + D (7)
q -q

Only the symmetrical case, however, is in complete equilibrium with
the homallelic classes, although the rate of change in other cases is ex-

tremely slow.
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(p (q)= ~~~(1) 8
*&(q) =2(log 2N + .577)q(1- q) (8)

when (1) is the proportion of heterallelic loci. The proportions in the homal-
lelic loci are

f(O) = - f(1/2N), f(l) = - f(1 - 1/2N). (9)4Nv 4Nu

f(O) + I + f(l) = 1

If there is no mutation, there is equilibrium of form among the heter-
allelic classes when all are approximately equally frequent but falling off
at the rate 1/2N per generation.

(p(q) = (loe T/2N (10)
where 10 is the initial proportion in heterallelic loci and T is the number
of subsequent generations. The two preceding results were confirmed
by Fisher5 6 by his method.

If mutation is recurring at appreciable rates such that Aq = -uq +
v(l - q), the distribution was shown to take the form

(q) = r(4Nu + 4Nv) q4Nv- (1 -q)4 - (1)
r(4Nu)r(4Nv)

With irreversible mutation, Aq = v(l - q), there is equilibrium of form,
with falling off of all class frequencies at the rate v per generation

p(q) = (loe vT)4Nvq4Nv - 1 (12)
With genic selection but very small mutation rates, Aq = sq(l -q),

equilibrium of form was shown for the distribution

(q) Ce4Neq + D (13)
q(1 - q)

The case

Ce4Nsq

q(l- q) (14)

is that which is in complete equilibrium with the homallelic classes. An-
other case is the solution

pq) Ce4Nsq 1) (5
= q(l - q) (15)

given by Fisher5'6 for irreversible mutatioil.
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It was shown finally that the formula for mutation and genic selection
combined, .vq = -uq + v(1 - q) + sq(l - q), could be written sufficiently
accurately

sP(q) = Ce4Nsqq4Nv- 1(1 _ q)4Nu - 1 (16)

The effects of cross breeding could be introduced in place of (or supple-
mentary to) mutation by the substitution previously referred to.

Haldane7 has criticized the conclusions derived from these formulae

N =10

I \ ~~V= lo
:NV1010

.N

.000 001 .002 .003 .004 .005 .006 .007 .008 .009 .010

Figure 9. Some of the forms taken by the distribution of frequencies of a recessive
lethal gene under different sizes of population. C(1 - q2)2Nqq4N1(1 - q) '. The
mutation rate (v) is taken as 10-6, giving a mean gene frequency of -/vv = .0032 in
very large populations. This is approximately realized with N = 106. With N = 106,
the gene is always present, but q is slightly reduced (.0030). In populations with effec-
tive size, N = 104, the gene is absent in about 15%, at any given moment and q =
.0020. With N = 103, the gene is absent in 87%, and q = .0008. The case of N = 102
is not shown as the gene is absent in about 99% and q is only .00026. With N = 10,
the gene is absent in 99.9%, and q = .00008. In selfed lines (N = 1) the gene is absent
in 99.996% giving q = .00002 (= 2v).

on the ground that only one type of selection is considered. It is un-
doubtedly important to extend these results to more general formulations
of the action of selection. This has now been done by the same method
as above for selection pressure of the form Aq = (s + tq)q(1 - q) which
applies to any degree of dominance, assuming s and t to be small. I have
not been able to reduce the general solution to a simpler form than an
infinite series, but in the case of complete equilibrium with the fixed
classes there is reduction to the following
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Ce4Nsq + 2Ntq2

(q) = (17)q(1 - q)
Still more. general results can be obtained by another approach (pre-

sented as an alternative in the preceding paper in the case of mutation
pressure). A frequency distribution, ranging from 0 to 1, in which mean
and standard deviation do not change under evolutionary pressure and
sampling errors, and whose mode (or modes) can be shown to be correct
in the limiting case of large population size, must be a good approximation
to the desired type. Let p(q) be any distribution of gene frequencies.
Then

= qp(q)dq (assuming that y p(q)dq = 1). (18)

Accidents of sampling by themselves can have no effect in changing the
mean, the mean of the distribution [(1 - q)A + qA']2Nbeing 2Nq. The
effect of any evolutionary pressure in changing the mean is given by the
expression

j Aqsp(q)dq. (19)

If Aq is linear in q, and therefore of the form Aq = -K(q - q) where 4q is
the equilibrium point, the change of mean is

Aq(p(q)dq = -K (q -q)p(q)dq = -K(q- q). (20)

Thus if the mean of (p(q) has reached the equilibrium point (q = q)
there is no further change. Mutation pressure, Aq = -uq + v(1 - q) =
- (u + v)(q-q), comes under this head. The mean of the distribution
of gene frequencies is always q = v/(u + v) at equilibrium, irrespective of
size of population. Cross breeding also comes under this head, Aq =
-m(q - qt). Selection pressure on the other hand, with Aq at least a
quadratic function of q should give different values of q with change in
size of population.
The variance of gene frequencies is also easily found in the case of linear

evolutionary pressures. The pressure from both directions toward the
equilibrium point must be balanced by the scattering effect of accidents
of sampling if there is equilibrium in the form of distribution.

a2 (q - )%'(q)dq - I (q + Aq -q)2sp(q)dq +
J1q(l -qJ" (1 q)p(q)dq. (21)

314 PROC. N. A. S.



GENETICS: S. WRIGHT

Inserting the value Aq = -K(q -q) this reduces to

q= 1 + 4NK-2NK2 (22)

The term in the denominator involving K2, tracing to the term in (21)
involving (Aq)2 is negligible for small values of Aq.
Thus if Aq = -K(q -), the distribution of gene frequency has the

2 q(Wmean, 4; variance, = q+ a range limited at q = O and q = 1

and for large values of N condenses about a single mode at the equilibrium
point, q = 4. In Pearson's system of frequency distributions,
unimodal curves of limited range come under type I. Assuming a range
limited at 0 and 1 and a unit area, the formula for type I is sp(q)-

r(x)r( Y) qX - '1-- q)y -1. Substituting this value of yp(q) in the formulae

for q and a2 gives x = 4NKq-, y = 4NK(1--q). In the case of mutation,
K = u + v, q = v/(u + v).

r(4Nu + 4NV) q4NV -
- -. 23

(q) = r(4Nu)r(4Nv) ( q)4Nu - 1 (23)

In the case of migration, K = m, q = qt

ip(q) =rP(4Nmq)[(4Nm) q4Nmqt -(1 - q)4Nm(l - 1. (24)
r(4Nmqj)r[4Nm (I -qt)]

These are identical with the formulae derived by the preceding method
(cf. 11).
When selection as well as mutation is at work we may write

Aq = Zq(1 - q) - uq + v(l - q) where Z = 1/2 d log wi/dq. (25)

A suggestion for the distribution formula can be obtained from the special
case in which N is so large that there is very little spread from the equi-
librium point (or points) at Aq = 0. The modes should approach the
equilibrium points as N is increased. We will make the provisional as-
sumption that the selection coefficients appear in a separate factor from
those involving the mutation coefficients and that the desired formula is
therefore of the type ~p(q) = 4,q4NV- 1(1 - q)4Nu - 1 where iI is the required
function of the selection coefficient. Putting d log (p(q)/dq = 0 as a
condition for any mode:

d log so(q) = d log t' + 4Nv- _ 4 - 0. (26)
dq dq q -q
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Thus

4Nd- - log + v(l- q) -uq + 4N = ° (27)

But at the equilibrium point,

Zq(1-q) + v(l-q)-uq = 0. (28)

Ignoring the term (2q-1)/4N which tends to disappear asN becomes large

z 1 d log (29)

- Ce4NfZd (30)

The formula suggested on this basis is thus as follows:

so(q) = Ce4NfZdqq4Nv -1(1 - q)4Nu-1 (31)
This can be written as follows by evaluating f Zdq

p(q) = CiV2N q4Nv - 1(1 - q)4Nu- 1. (32)

We will return to this form later; for the moment it will be convenient
to use the following alternative form, easily derived from (25) and (31).

Ce4NfAqd/1a(1- q)

p(q) q(l - q) (33)

So far this is merely a suggestion derived from a limiting case. It may
be tested, however, for equilibrium in the general case. Testing first for
shifting of the mean under evolutionary pressure (see 19)

Aq(p(q)dq = f,e r4NAqdql/(l - =)d
Cq 4NfZdqq4ND(i - q)4NU* (34)
4N 0

Thus there is no shifting of the mean if 4Nv > 0, 4Nu > 0.
The test (21) for balancing of the effects on variance of evolutionary

pressure and accidents of sampling can be written as follows, omitting the
negligible term in (Aq)2.

2 f qAqsp(q)dq - 2N f q(l - q)(p(q)dq. (35)

The left-hand member can be integrated by parts after substituting
the suggested value of so(q) and shown to equal the right-hand member.
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2C 4N qAqdqAq(l q)dJq(l - q)
"

C f'
4N Adqlq(l q) = 4NfZdq 4Nv+ 1 )4N_qd ) =e- e q (1 q)N

2N 2N o

f 1e4NfAqdq/q(l - q)dq - - :1q(l - q)(p(q)dq. (36)

The condition of no change in variance is thus met to the same degree
of approximation as in the case of mutation. The special case of mutation
and genic selection, Aq = -uq + v(l - q) + sq(l - q) gives (p(q) =

Ce4Nsqq4Nv - 1(1 - q)4Nu - 1, identical with that (16) derived by the previous
more exhaustive method. This holds even in the limiting case (14) in
which Aq = sq(l - q) but as already noted equilibrium requires that
there be some mutation even though the rates are so low that they may
be ignored in Aq. The formula (17), obtained by the more exhaustive
method in the case of more or less dominance, Aq = (s + tq)q(l - q) is
also in agreement with the present result.
The effects of certain differences in severity of selection and in effective

size of population on the distribution of gene frequencies, assuming no
dominance, are illustrated in figures 1 to 3. Figures 4 to 6 make similar
comparisons for the case of a completely recessive unfavorable gene.
These figures can also illustrate the joint effects of selection, cross breeding
and inbreeding in local populations by replacing u and v by l/2m.
One of the forms taken by the distribution when there is equal selection

against both homozygotes in favor of the heterozygote is illustrated in
figure 7. With sufficiently smaller population size or sufficiently less
intense selection, the distribution would become U-shaped. With a
sufficiently larger population size it would become I-shaped about a mean
frequency, q = 0.5. Increased severity of selection, without increase
in size of population, would also pile up the frequencies about this point.

In a large population, mutation opposed by moderately severe selection
tends to hold the deleterious gene at a low frequency, q = v/s if semi-
dominant, q = (vls) '/2 if completely recessive. In a sufficiently small
sample from such a population, selection of the same degree of severity
becomes ineffective and the mean frequency of the deleterious gene gradu-
ally rises to the equilibrium point due to opposing mutation pressures
q = vl(u + v). If unfavorable mutation is much more frequent than the
reverse (v > u) this may mean a shift to approximate fixation of the
deleterious gene. The rate of approach to the new mean, after a reduction
in size of population is, however, extremely slow, being dependent on
mutation pressure.
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In the case of a deleterious recessive factor, the immediate effect of
reduction in size of population is indeed the reverse of that indicated
above, though the final effect, a rise in mean frequency of the deleterious
gene toward the point q = v/(u + v) occurs at length in this case as well
as when dominance is lacking (provided that populations in which the
deleterious gene is fixed can persist). The immediate decrease in fre-
quency on reduction of size of population is illustrated in figure 9 in the
extreme case of a recessive lethal in which case there can, of course, be no
secondary rise in frequency. Taking the dominant as the type, w =
1 - q2, Aq = v(1 - q) - q2/(l + q) giving the approximate equilibrium
point q = vl/2. The distribution is

p(q) = C(1 - q2)2N q4Nv-1(1 - q)-. (37)

The mean, q, can easily be expressed in r functions (on substituting

x for q2). It reduces approximately to
r

= F(2Nv + 1/2) For values
q 2N FP(2Nv)

of 2Nv larger than 1, this is close to vl/2 i.e., gene frequency varies about
the equilibrium point. If on the other hand 2Nv is a small fraction, q is
approximately v(2irN)1/' which means a great reduction in frequency of
lethals in populations as the effective size of inbreeding units falls below 1/2,
So far we have derived formulae for distributions only where the selection

coefficients are constant. But as already noted, it is really the system of
gene frequencies that is more or less adaptive, not the isolated genes. No
adequate picture of the evolutionary process can be made without taking
factor interaction into account.
The momentary selection pressure in cases of factor interaction was

given in (3), giving as the distribution of gene frequencies

(p(qi) = CW-2Nqi4NV;i- 1(1 _ qi)4NUi - 1. (38)
Here w- is the mean selective value with qi variable, but a specified set of
values for the other gene frequencies.
The joint frequency surface must be such that on assigning specified

values to all of the q's but one, the distribution for that one is that given
by (38). The joint distribution

'p(qi, q2, * . qn) = CU 2NIIt = lqi4Nvi- 1(1 _ qi)4Nui - 1 (39)
when fw- is the mean selective value in terms of all of the q's as variables,
satisfies this condition and is thus the desired form.
As an example consider the case of a character for which the grade of

development depends on the additive effects of multiple factors, lacking
dominance, but for which the selective value falls off as the square of its
deviation from an optimum. The selective value has been shown to be
as follows:2
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w = 1 - K[2Zcaqi(l - qi) + (M-0)2]

where ai is the effect of gene Ai with frequency qi; M(= 2catiqi) is the
mean and 0 is the optimal grade.
The multidimensional surface, w, has in general many peaks, separated

by shallow saddles. The shallowest saddles are those between optimal
combinations differing only in two pairs of factors, e.g., A A a2a2......
and aia,A2A2.......
The nature of the distribution along and across such a saddle is illustrated

in figure 8 in the case of two pairs of factors with equal effects. With
smaller N the distribution from A,Aja2a2 to alalA2A2 becomes U-shaped.
With larger N or weaker selection it becomes I-shaped about q = 0.5.
Stronger selection pushes the modes toward the favored homallelic types.
The evolutionary implications will not be discussed here in detail. For

the most part the present results merely put the conclusions previously
reachedl8'9 on a more definite basis. These conclusions may be sum-
marized briefly as follows.

In large freely interbreeding populations with no secular change in
conditions of life for long periods of time, all gene frequencies approach
equilibrium at a certain peak w, not necessarily the highest peak. Under
secular change in conditions the surface wE itself changes and there is
evolutionary change in the system of gene frequencies, following the
changes in position of the controlling peak. Evolution here may be said
to be guided by intragroup selection.

In sufficiently small completely isolated populations, the random di-
vergencies of gene frequencies from their equilibrium values become
important, tending to bring about approximate fixation of some random
combination of genes which is not likely to be a peak combination. The
result is a largely nonadaptive differentiation. In extreme cases there
may be the deterioration which characteristically follows excessive in-
breeding. Isolation may here be considered the dominating evolutionary
factor.

In a large population subdivided into numerous small, partially isolated
groups, the combination of directed and random divergencies in gene
frequencies, associated with intergroup selection, gives a trial and error
mechanism under which the system of gene frequencies may pass from
lower to higher peak values of iwi and the species may evolve continuously
even without secular changes in conditions (although this process, occur-
ring in all species, itself tends to bring about such secular changes). The
combination of partial isolation of subgroups with intergroup selection
seems to provide the most favorable conditions for evolutionary advance.
Mutation is always a factor in providing material for evolution but

may be said to dominate the course of evolution only in so far as mutants
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appear which are fertile inter se but largely infertile with the parent type,
i.e., when mutation is itself an isolating factor.
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THE INFLUENCE OF WA VE-LENGTH ON GENETIC EFFECTS
OF X-RA YS'

By HUGO FRICKE AND M. DEMEREC
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A great deal of work has been done with genetic effects of x-ray radiation.
It has been shown that this effect, as measured by lethals produced in
mature sperm of Drosophila melanogaster, is proportional to the dosage in
r-units. It has also been found that the dosage-genetic effect relationship
is not affected by the wave-length within a range of 0.02 to 2.0 A.

It is a problem of theoretical importance to determine whether or not the
mechanism which produces genetic effects is dependent upon wave-length,
especially within the range of soft rays. In studying this range, however,
technical difficulties due to high absorption are encountered.
The purpose of this work was to obtain data on the genetic effect of soft

rays in experiments where both physical and biological sides were well con-
trolled. A particular effort was made to control the absorption. While
these experiments were in progress, results of similar experiments conducted
by Timofeeff-Ressovsky and Zimmer2 were published. Results of both ex-
periments agree, although there is a disagreement in their interpretation.

Experimental Procedure. Physical Part.-The x-rays were obtained
from a tungsten tube with a bulb of lithium glass having a 0.02 mm. window
for the exit of the soft rays. The conditions of irradiation are given in
table 1. The quality of the rays was determined by measuring their ab-
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